

How to SPAM the 150 MHz sky

Huib Intema | Leiden Observatory

04/11/2016

<u>Main collaborators:</u> Preshanth Jagannathan (UCT/NRAO) Kunal Mooley (Oxford) Dale Frail (NRAO)

Talk outline

- The need for a low-frequency radio reference survey
- The TGSS survey
- The SPAM pipeline
- Application to TGSS
- TGSS ADR as a reference survey
- Current status and future plans

LOFAR: the Low Frequency ARray

SKA-low: Square Kilometer Array at low frequencies

- The Universe is very transparent for long radio waves
- Rich tradition on surveying the sky at low radio frequencies
 - Cambridge catalogs (UK), NRAO surveys (USA), Westerbork (NL), Molonglo (AUS)
- The intrinsic large field-of-view provides a high survey speed
 - But the resolution is typically poor
- Renewed astronomical interest to survey the radio sky at sub-GHz frequencies
 - Higher resolution, better sensitivity, new technologies (LOFAR, SKA-low)
- Some main science drivers are
 - High-redshift neutral hydrogen (Epoch-of-Reionization)
 - Pulsars and transients (GRBs, FRBs, GRWs, ...)
 - Exo-planets
 - Galaxy cluster formation and evolution
 - Cosmic magnetism

Bonafede+ 2014

- Direction-dependent effects are a major problem for wide-field, low-frequency radio surveys
 - Ionospheric dispersive delay and Faraday rotation
 - Complex antenna/station beam patterns
- Main driver behind recent development of direction-dependent (DD) calibration schemes
 - field-based calibration, SPAM, MeqTrees, Sagecal, LOFAR facet calibration, KillMS, ...
- Having a good reference sky model at similar frequency and resolution is crucial
 - Local astrometry is not conserved due to DD ionospheric phase gradients
 - Complex antenna beam patterns introduce uncertainty in measured flux densities
 - Large uncertainty in low-frequency flux density scale in general

Intema+ 2009

Major distortion is ionospheric dispersive delay (similar to optical seeing)

- $\phi = \frac{e^2}{4\pi\varepsilon_0 m} \lambda \int_0^d n_e(s) \, ds$
- A radio interferometer measures phase differences, therefore senses the differential structure in the electron column density (TEC)
 - TEC gradients cause apparent source shifts
 - Higher TEC structures cause source distortions
 - TEC structure varies with time and direction
 - Very sensitive: 1 radian per 0.01 TECU at 75 MHz
- Time series of 1-minute snapshot images of 9 sources distributed over a single 10-degree field-of-view of the VLA at 74 MHz (movie created by W.D. Cotton, NRAO)

Selection of available/upcoming reference sky surveys

Survey	Frequency	Sensitivity	Resolution	Area
MSSS-LBA	30-78 MHz	≲50 mJy beam ⁻¹	≲150″	$20000 \Box^{\circ} (\delta > 0^{\circ})$
8C	38 MHz	200-300 mJy beam-1	$4.5' \times 4.5' \csc(\delta)$	$3000 \square^{\circ} (\delta > +60^{\circ})$
VLSS	74 MHz	100 mJy beam-1	80"	$30000 \square^{\circ} (\delta > -30^{\circ})$
MSSS-HBA	120-170 MHz	≤10–15 mJy beam ⁻¹	≲120″	$20000 \square^{\circ} (\delta > 0^{\circ})$
7C	151 MHz	20 mJy beam-1	$70'' \times 70'' \csc(\delta)$	5500 □° (irregular coverage)
TGSS	140-156 MHz	7-9 mJy beam-1	20"	$32000 \square^{\circ} (\delta > -30^{\circ})$
WENSS	330 MHz	3.6 mJy beam ⁻¹	$54'' \times 54'' \csc(\delta)$	$10000 \square^{\circ} (\delta > +30^{\circ})$
NVSS	1400 MHz	0.45 mJy beam-1	45"	$35000 \square^{\circ} (\delta > -40^{\circ})$

Heald+ 2015

- 15 minutes/pointing, median 5-7 mJy/beam RMS
- 2,000 hours granted and observed between 2010-2012

How to SPAM the 150 MHz sky - Huib Intema (Leiden) – SPARCS Goa 04/11/2016

Overview of the TGSS

TIFR GMRT Sky Survey

- Continuum survey at 150 MHz with the GMRT
- PI-driven project
- 16 MHz bandwidth, 20" resolution, ~3 degree FoV
- 5,336 pointings covering DEC +90 to -55 degrees 37,000 square degrees = 90 percent of the radio sky
- Observing grid following FIRST scheme

Overview of the TGSS

TGSS data processing and releases

- Data processing based on old AIPS++ pipeline, selfcal only
- Dedicated 100-node compute cluster at NCRA
 - Recently upgraded to 1600 cores, 80 TB RAM, 1 PB diskspace
- 5 data releases to date, last one (DR5) in late 2012
- DR5 contains about 10 percent of the survey area
- New releases promised, but current state (still) unclear
- Pilot and main survey remain unpublished
- Website not updated since 4 years
- All raw data has become publicly available through GMRT archive (https://naps.ncra.tifr.res.in/goa/)

Pipeline development triggered by GEMS survey

- GMRT Exploration of the transient Meterwavelength Sky
- Slow transient survey in STRIPE82 region (PI Mooley, Oxford)
- 150 MHz, 300 deg², 2 epochs
- 4-7 mJy/beam rms noise, 20" spatial resolution
- Uses TGSS data as extra epoch

Source Peeling & Atmospheric Modeling

- Python/AIPS-based software for in-beam ionospheric calibration Relies heavily on ParselTongue
- Performs wide-field (direction-dependent) ionospheric calibration, modeling, and imaging
- Strategy and algorithms developed and improved for VLA and GMRT (since 2007)
- Developed into fully automated pipeline for GEMS project (late 2014)
- Custom-build scheduler for parallel batch job processing on Linux compute cluster (thanks NRAO AOC computing staff)
- Pipeline processing worked extremely well for both GEMS and TGSS data
- "Small" steps from STRIPE82 to DR5 (demonstrator) to whole TGSS survey

SPAM core functionality

- A measurement of the local ionospheric TEC structure is obtained by phase calibrating on bright sources within the field-of-view (e.g., peeling)
- The measured phases of all source-antenna pairs can be mapped onto ionospheric layer
- All phases per time interval are fitted with a single model (based on thesis work by Van der Tol, 2009)
- Model predicts phases corrections in arbitrary directions for imaging full field-of-view
- Example time series of a dual-layer phase screen model for narrow-band VLA 74 MHz observation
 - Phase screens fitted each 10 sec to peeling phases of ${\sim}10$ sources

Image-based flagging ("ripple killer")

Functional overview

SPAM pipeline performance

- Total time-averaged raw data volume 1.8TB
- Data conversion & pre-calibration: 30 minutes/observation
 - 200 observations = 100 CPU hours
- SPAM pipeline: 3 hours/pointing
 - 5,500 pointings = 16,500 CPU hours = 1.9 CPU years
 - Comparison LUSTRE vs SSD vs HD vs RAM drive: RAM drive by far best performance Requires minimization of temporary data storage
- Parallel SPAM processing: 12 jobs/node, 4 nodes = 2 weeks(!)
- With 2 passes, 98 percent of the TGSS survey area was processed successfully
- Remaining 2 percent were problematic data and sky areas, and required manual work
- Several post-imaging corrections introduced to ensure internal flux consistency

Sensitivity distribution

- 80 percent of the pointing images have a noise level between 2-5 mJy/beam
- Higher noise mostly in Galactic plane, near bright sources (Cas A, Cyg A), and at very low DEC

- 0.62 Million radio sources detected at 7-sigma level
- Source density correlates with background noise
- Majority of sources are unresolved at 25"
- Positional accuracy < 2"
- Flux density accuracy ~10 percent*

Intema+ 2016, A&A (accepted), arXiv:1603.04368

- Sterrewacht Leiden
- First full data release of the GMRT 150 MHz sky survey in March (TGSS Alternative Data Release)
- Essential low-frequency reference survey at 25" resolution and 2-5 mJy/beam noise
- Covers 90 percent of radio sky, nearly complete above -53° DEC (significant overlap with LOFAR, MWA and SKA)
- Fully automated processing pipeline including (SPAM) DD ionospheric calibration
- Pilot project for LOFAR surveys products on ASTRON VO (vo.astron.nl)

Interactive access through CDS Aladin

Mosaicking options through NASA SkyView

Pretty image gallery

Typical example of SPAM and original TGSS DR5

- Reduction of overall background noise (2-5 mJy/beam versus 5-9 mJy/beam)
- Reduction of artifacts around bright sources
- Increase of peak fluxes
- Improvement of image fidelity (fewer false detections)

Comparison against MWA (no long baselines)

Hurley-Walker+ 2016 Wayth+ 2015

Sterrewacht Leiden

Resolution versus surface brightness sensitivity

Detailed source counts at 150 MHz

- Fitted with 6-parameter polynomial in log-log space
- See Intema+ 2016

Leiden

TGSS versus MWA-GLEAM and LOFAR MSSS flux density comparison

Quantifying ionospheric effects

- Mild ionospheric distortions causes angular broadening: Strehl ratio $R = \exp\left(-\frac{\sigma_{\phi}^2}{2}\right)$
- For unresolved radio sources: the ratio of peak flux over total flux
- Preliminary comparison between LOFAR HBA Tier-1 survey fields and TGSS survey data

Current status and future plans

- TGSS ADR covers 90 percent of the radio sky at 25" resolution and a 2-5 mJy/beam median noise
- The full public data release includes
 - 5 x 5 deg² FITS images
 - Image cut-out service (up to $1 \times 1 \text{ deg}^2$)
 - Source catalog with 0.62 Million entries
- Resolution is better by factor of a few with respect to surveys at similar frequency
- Sensitivity is similar or better with respect to surveys at similar frequency
- Relatively high astrometric and flux density accuracy
- Estimated reliability is extremely high down to the 7-sigma detection threshold (>99 percent)

Current status and future plans

- TGSS images have been increasingly used as input models for LOFAR calibration
 - LOFAR Global Sky Model (GSM) generator now available on TGSS ADR webpage
- TGSS source catalog is used for cross-match by MWA GLEAM survey (to be released soon)
- TGSS data products are in itself interesting, mainly because of the large area covered
 - Cross-matched to NVSS to identify steep-spectrum radio sources (Mandal, de Gasperin, Emig)
 - Looking for radio counterparts of gamma ray sources detected by *Fermi* (e.g., Frail+ 2016)
 - Studying the spectral behavior of pulsars (compact steep-spectrum)
 - Finding high-z radio galaxy candidates based on their steep spectra (Saxena)
 - Targeted search for radio emission from exo-planets
 - Finding dying/dead radio galaxies
 - Finding merging galaxy clusters through their Mpc-scale diffuse radio emission
- <u>http://tgssadr.strw.leidenuniv.nl/</u>

Current status and future plans

- Impact of TGSS ADR1 is slowly increasing
 - 18 citations to main survey paper
 - ~10 visitors per day on project webpage
 - 100+ followers on Facebook page
- Various successful proposed follow-up observations

Candidate HzRGs with VLA, candidate milli-second pulsars with ATCA and GBT, candidate radio halos and
relics in galaxy clusters (GMRT), candidate double-double radio galaxies (GMRT),

- Next data release (ADR2) planned for spring 2017
 - Incorporation of new make-up observations (70 hours allocated)
 - Incorporation of longer observations on extremely bright sources (A-team)
 - Possible inclusion of lowest declination fields (-53° to -55° DEC)
 - Flux scale corrections for subset of fields (~5 percent)

		Country		
106 Hts 🗟	21.20%	Netherlands	=	
99 Hits 🛐	19.80%	United States	144 C	1
95 Hts 🖳	19.00%	India		
44 Hts	8.80%	Poland	-	
37 Hts 🔃	7.40%	United Kingdom	53	
30 Hits 🛐	6.00%	Australia		
19 Hts 词	3.80%	New Zealand	a	
13 Hts 👔	2.60%	Germany		
12 Hits 💽	2.40%			
10 HPs	2.00%	France	110	

Science: A study of USSS in Galaxy Clusters

- Automated search for USSS in TGSS-NVSS with spectral index <~ -2
- Correlated to known cluster positions
- Subset of 7 sources selected for follow-up with GMRT at 325 MHz
- 35 hours allotted for GMRT cycle 31 (PI Soumyajit Mandal, PhD Leiden)
- Right: two USSS examples gray = DSS2R, red = ROSAT, blue = TGSS spectral index = -2.9 (top), -3.0 (bottom)

Science: High-Z Extreme Spectrum Project

- Selected compact USSS with TGSS-NVSS spectral index < -1.3 $\,$
- Matched to FIRST to select on compactness and obtain good astrometry
- Ensure no optical and/or IR counterparts in all-sky optical/IR surveys (SDSS, PanSTARRs, WISE, UKIRT surveys)
- Selected 33 new USS sources for various follow-up (PI Aayush Saxena, PhD Leiden)
- Sample probes unexplored area in parameter space
- Hope to find the first HzRG at very high redshift (z>6) to probe HI absorption from the Epoch-of-Reionization

Leiden

Science: Finding milli-second pulsars

- SRs (< -2.5) are
- In TGSS steep spectrum PSRs (< -2.5) are (γ-ray emitting) MSPs (Frail+ 2016)
- Hope is to find exotic PSRs missed by traditional search methods
- Method selects without regard to period, DM, orbital parameters and scattering
- Measure compactness, spectrum, polarization position
- 11 PSR candidates in 3FGL, 12 in 4FGL
- VLA/ATCA follow-up for improved positions and resolution
- Promising candidates searched for pulsations in γ -ray (Fermi) and/or radio (GBT and Parkes)

