A GMRT study of cometary-shaped radio galaxies

Biny Sebastian and Dharam V. Lal NCRA

Outline

- Introduction
- Sample Selection
- Imaging Results & Discussion
- uGMRT Results
- Summary

Head Tail Radio Galaxies?

Plume

Jet

3C129

3C31

(Lane et al., 2002)

Head Tail Radio Galaxies

Beam model (Begelman et al., 1979, Jones and Owen, 1979)

 Underlying physics causing the peculiar morphology. Method for cluster detection (Blanton et al. 2003, Mao et al. 2010) Cluster environmental probes => constraining ICM density, magnetic fields and velocity flows

Why observe with the GMRT? • Steepening of spectral index along the tail. Diffuse emission is brighter at low frequencies. • Relatively better resolution provided by the GMRT at such low frequencies.

Hence most ideal for studying the morphology and

spectral structure..

Spectral Ageing Theory

Frequency

Sample Selection

Target Name	Bandwidth (MHz)	Central Frequency(MHz)
IC310	8/8	240.3/609.6
IC711	8/8	240.3/609.6
NGC1265	8/8	240.1/609.6
NGC7385	8/8	240.2/609.9
GB6B0335+09 55	8/16	240.0/618.33
PKS 0053-015	32/32	322.7/607.9
PKS B0053- 016	32/32	322.7/607.9
4C 13.17a		
3C264		
1709+397		
NGC 6109		

Spectral Index map

Equipartition Magnetic field

Optical Counterpart

Morphology

Morphology

uGMRT Results

- 3C129: Observation details
 - Time on source :3hrs
 - Central Frequency- 400 MHz
 - Bandwidth- 200 MHz
 - Number of antennas used -14

3C129: UV Coverage

Wide-Band Imaging

- Sky Brightness Spectra
 - Bandwidth Synthesis
 - Narrow band imaging and stacking
 - Solution : Multi Scale-Multi Frequency Synthesis algorithm
- Primary Beam
 - HPBW varies with frequency as λ/D
 - F.O.V at 250 MHz = twice F.O.V at 500 MHz

Data Analysis

- AIPS was used to edit and calibrate the data.
- A few channels were collapsed before imaging.
- Imaging was done in CASA.
- W-projection was used to take care of the widefield corrections.
- MS-MFS algorithm was used while imaging.

Summary

- Low frequency images and spectral index images of seven of the head-tail radio galaxies were made.
- Steepening of spectra towards the tails was clearly seen in all sources.
- Equipartition magnetic field was estimated along the tail.
- Presence of wiggles in all the sources with resolved jets in the sampe is probably due to precession or Helical instability or ?.
- GWB data of 3C129 was reduced and images were made making use of the MS-MFS algorithm.

IC 711

Cluster Name	ABELL 1314
Cluster Redshift	0.0335
Galaxy Redshift	0.0316
Length	17.8'/ 720.6 kpc
Galaxy Velocity	800 km/s
Dynamical Age	875 Myr