Multi-wavelength analysis of AGN/SFG separation

E. F. Ocran University of Cape Town

GMRT 610 MHz observations of EN1

AGN DIAGNOSTICS

N		Catalogue	Size	Fraction%
x-ray luminosity	Radio Iuminosity $(\log_{10} L_{1.4} \ge 25 WH^1): 26$ sources, 1.5%	GMRT	2800	100%
(log ₁₀ L _x ≥ 42 erg s ⁻¹) : 69 sources, 4.0%		SERVS band 1 or 2	2369	85%
IBACopiors		SERVS band 1 and 2	2234	80%
(Donley et al. 2012) : 138		SWIRE all bands	1091	39%
7.8% 2800 GVIRI		MIPS 24µm	1672	60%
1760 sources with redshift		X-RAY	92	3.3%
63%		MRR13- PHOTZ	1456	52%
BOSSAGN : Iumin		MRR13-FIR- LUM	1279	46%
		SPECZ	817	29%
5.5% 25 WH Sources		REDSHIFTS	1760	63%

Mid Infrared - Radio Flux Ratio

- ✓ $q_{24 \, \mu m} = \log_{10}(S_{24 \mu m} / S_{1.4 \, GHz})$
- ✓ We measure a median q_{24µm} value of 1.10 ± 0.02 for sources with redshifts within the same range as studied by Sargeant et al, 2010.
- ✓ For our full sample with redshifts we measure a median $q_{24\mu m}$ = 0.86 ± 0.01 at a median redshift of ≈ 0.71.

Class	Number	Fraction %
SFG	1513	86
RQ AGN	173	10
RL AGN	74	4

 $\log_{10}(1 - 1)$

+ z)

 $\log_{10}(L_{1.4GHz}/\mathrm{WHz^{-1}})$

 $\log_{10}(L_{\rm IR}/L_\odot)$

Star-forming galaxies at high redshift

Wang et al, 2012, presented a new color selection of extremely red objects (EROs) (i.e. most extreme dust-hidden high-redshift galaxies) with K_s and IRAC colors of K_s - 4.5µm > 1.6.

This selection aims at galaxies at z > 2 whose extremely red colors are likely caused by large dust extinction, unlike some other selections for high-redshift red objects.

The Far-Infrared Radio Correlation

Radio Emission in SFG and RQ AGN

✓ Empirical conversion between the radio power at 1.4 GHz and the SFR of the galaxy from Murphy et al, 2011 is : SFR_{radio} [M_☉

 yr^{-1}] = $log_{10}(L_{1.4 \text{ GHz}}) - 21.20$

- ✓ log₁₀(SFR_{FIR})_{ALL} = 0.95±0.02×log10(SFR_{radio}) _{ALL}- 0.02±0.03
- ✓ $log_{10}(SFR_{FIR})_{SFG} = 0.98\pm0.02\times log10(SFR_{radio})$ _{SFG}- 0.07±0.03
- ✓ log₁₀(SFR_{FIR})_{RQ AGN} = 1.04±0.05×log10(SFR_{radio})_{RQ AGN}- 0.12±0.11

Conclusion

- ✓ We have explored different AGN indicators from the radio, mid-infrared, optical and X-ray.
- ✓ We reaffirm that the ratio between the mid-infrared and radio flux parameterized by the q_{24µm} value, demonstrated in Bonzini et al., 2013, is an important parameter to identify RL AGNs
- ✓ Our scheme expands on the one adopted by Bonzini et al., 2013 and combines radio, mid-infrared, optical and X-ray data to efficiently separate the radio source population with redshift associations into three classes: SFGs, RQ AGNs and RL AGNs.
- ✓ We have determined the relative contribution of the three classes of sources to the subsample with redshifts and we find that 86% are SFGs, 10% are RQ AGNs and 4% are RL AGNs.