

International
Centre for
Radio
Astronomy
Research

The ATCA XXL-S 2.1GHz Radio Survey: First results and preliminary AGN luminosity functions

Minh Huynh and Andrew Butler (ICRAR/University of Western Australia)

Vernesa Smolcic and Jacinta Delhaize (Uni. Of Zagreb)

THE UNIVERSITY OF WESTERN AUSTRALIA

Why radio surveys?

Radio is a sensitive tracer of both SF and AGN activity, unaffected by dust

Radio-loud AGN dominate above 1 mJy

Significant population of faint AGN, even at S < 0.1 mJy

Radio surveys are the best way to detect 'radiatively-inefficient' or radio-mode AGN

Why Radio + XRay?

For a full census on AGN feedback:

- X-ray = info on radiatively-efficient AGN
- Radio = info on radiatively-inefficient AGN
- Some AGN can only be identified in radio (LERGS)
- Mechanical energy from jets heats ICM and IGM: Radio-mode feedback.
- X-ray + radio combo = thermal + nonthermal processes
- Identify contamination of X-ray by nonthermal sources

Xray and Radio emission from IC scattering candidate, Jelic et al. 2012

XXL Survey

XMM Extragalactic Survey (XXL) is the largest XMM program ever, totalling 6.9 Ms

- 2 x 25 sq deg fields with deep XMM data
- f >~5 x 10⁻¹⁵ erg/s/cm² in
 [0.2 2] keV band
- Expect ~30,000 Xray AGN

XMM-Newton, www.esa.int

Minh Huynh

XXL-S (XMM-BCS)

Right Automation

15" 50

XXL-S Multiwavelength Data

Survey / Telescope	Wavelength Regime	Filters & Depths	% of XXL-S
Spitzer South Pole Telescope Deep Field (SSDF)	Mid-Infrared	3.6μm=7.0μJy 4.5μm=9.4μJy	100%
Wide-field Infrared Survey Explorer (WISE)	Mid-Infrared	$W1(3.4\mu m)=0.08 mJy$ $W2(4.6\mu m)=0.11 mJy$ $W3(12\mu m)=1 mJy$ $W4(22\mu m)=6 mJy$	100%
Vista Hemisphere Survey (VHS)	Near Infrared	J _{AB} =21.2, Ks _{AB} =19.8	~95%
Dark Energy Survey (DECam)	Optical	g=26.1, r=25.6 i=25.8, z=25.3	g≈95%, r≈66% i≈66%, z=100%
Blanco Cosmology Survey (BCS)	Optical	g=23.9, r=24.0 i=23.6, z=22.1	~99%
XMM-Newton	X-ray	0.5-2 keV = 10 ks 2-10 keV = 10 ks	100%
Australian Astronomical Telescope (AAT)	7232 optical redshifts	N/A	1100 redshifts

Radio Followup of XXL

XXL-N (AKA XMM-LSS)

- 40 x 40 arcmin region (supercluster area) covered by JVLA @ 3 GHz to 20 µJy rms
- Almost full 25 sq deg area covered by GMRT @ 610 MHz to 100-300 µJy rms

XXL-S

 Full 25 sq deg region covered by Australia Telescope Compact Array @ 2.1 GHz to 40 µJy rms

Australia Telescope Compact Array in Narrabri, NSW, Australia

Australia Telescope Compact Array

Located near Narrabri, about 500km northwest of Sydney

6 x 22m dishes in east-west array, but with short north-south spur.

Maximum baseline of 6km

Operates in several bands from 1.1 to 105 GHz.

New backend installed in 2009 provides up to 2 x 2 GHz bandwidth

ATCA XXL-S Observations

- 290 hours awarded in 2012 (pilot) and 2014
- 471 pointings total for full 25 sq deg
- Hexagonal ATCA mosaicing pattern in 2014, grid pattern in 2012
- Both 6km and 1.5 km configurations.
- Central frequency: 2.1 GHz (1.1 3.1 GHz band)
- Median noise 41 µJy/beam rms
- 5.4 x 4.2 arcsec synthesized beam

ATCA XXL-S Observations

ATCA XXL-S Mosaic

Typical Region of the Mosaic

Mosaic Noise Properties

- Noise distribution peaks at 37 µJy/beam
- Median noise of 41 µJy/beam
- Tail to higher values at edges of mosaic due to primary beam correction and artefacts around bright sources

How ATCA XXL-S Compares

Based on Fig 1 of Norris et al. 2011

Source Extraction

- 6200 sources > 5 sigma extracted with BLOBCAT (Hales et al. 2012)
- About 600 complex/multi-component sources fit and extracted manually

-134e-65 -430e-85 -235e-65 -216e-86 -214e-65 -647e-05 -648e-05 -615e-65 -135e-64 -

Completeness

- Monte-carlo like simulation with 10,000 sources
- 45% complete at ~0.2 mJy (5 x median rms)
- 90% completeness level is ~0.4 mJy

Spectral Indices

- Sources matched to SUMSS 843 MHz all sky survey
 - S843 MHz > 6 mJy
 - 586 SUMSS sources in XXL-S
- Median lpha = -0.75, ($S \propto
 u^{lpha}$)

Radio Source Count

Preliminary Radio Luminosity Functions

AGN Classification

Separating SF galaxies and identifying HERGs/ LERGs:

- Optical spectra (if available)
 - [OIII] emission line luminosity and EW
 - BPT diagram ([OIII]/Hbeta vs [NII]/Halpha)
- Mid-IR (WISE/IRAC)
 - IR radio correlation, $q_{22obs} = log_{10}(S_{22\mu m}/S_{1.4GHz})$
 - WISE colours (W1 W2 vs W2 W3, Jarrett et al.)
 - WISE W3 luminosity
 - IRAC colours (Donley et al., Stern et al.)
- X-rays (XMM Newton)
 - $L_X > 10^{42}$ erg/s, hardness ratio
- MAGPHYS SED modeling
- Rest-frame colours, NUV-r, g-i
- Radio luminosity, spectral index and morphology

Summary

- Deep (<0.1 mJy rms) wide-area (10s sq deg) radio surveys are essential for understanding AGN
- ATCA observations of XXL-S 25 sq deg
 - Central freq of 2.1 GHz, (2 GHz bandwidth)
 - Median ~40 µJy rms
 - ~5 arcsec resolution
 - 6200 radio sources identified
- Radio source counts and spectral indices in general consistent with previous findings
- Preliminary radio lum functions show power of these observations
 - Constrain bright end of radio AGN luminosity function up to $z \ge 1$
- Source classification ongoing, future RLFs by AGN type