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Abstract. Images from the Hinode satellite have led to the discovery
of dark upflows that propagate from the base of prominences, develop-
ing highly turbulent profiles. The magnetic Rayleigh-Taylor instability has
been hypothesized as the mechanism to create these plumes. To study the
physics behind this phenomenon we use 3D magnetohydrodynamic sim-
ulations to investigate the nonlinear stability of the Kippenhahn-Shliiter
prominence model to the magnetic Rayleigh-Taylor instability. The model
simulates the rise of a buoyant tube inside a quiescent prominence, where
the upper boundary between the tube and prominence model is perturbed
to excite the interchange of magnetic field lines. We find upflows of con-
stant velocity (maximum found 6kms™') and a maximum plume width
~ 1500km which propagate through a height of approximately 6 Mm, in
general agreement with the Hinode observations.
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1. Introduction

There is a long history of flows inside the cool (10000 K, Tandberg-Hanssen 1995),
dense (~ 10! cm~3, Hirayama 1986) plasma of quiescent prominences. Observations
of quiescent prominences have shown downflows (Engvold 1981), vortices of approx-
imately 10° km x10° km in size (Liggett & Zirin 1984) and a bubble of size 2800 km
forming a keyhole shape with a bright center (de Toma et al. 2008) with velocities of
10-30km s~!'. Using a characteristic gas pressure of 0.6 dyncm™2 (Hirayama 1986)
and magnetic field of 3 ~ 30 G (Leroy 1989), gives a plasma 8 ~ 0.01-1. For a review
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of the current understanding of quiescent prominences see, for example, Tandberg-
Hanssen (1995), Labrosse et al. (2010) and Mackay et al. (2010).

Observations by the Solar Optical Telescope (SOT) (Tsuneta et al. 2008) on the
Hinode satellite (Kosugi et al. 2007) have shown that on a small scale quiescent promi-
nences are highly dynamic and unstable phenomena. Berger et al. (2008) and Berger
et al. (2010) reported dark plumes that propagated from large bubbles (approximately
10 Mm in size with column density less than 20 % of the prominence density, Heinzel
et al. 2008) that form at the base of some quiescent prominences. The plumes flow
through a height of approximately 10 Mm at a velocity of approximately 20 km s~
before dispersing into the background prominence material (see Fig. 1). Berger et al.
(2011) presented observations of prominence bubbles using the Atmospheric Imaging
Assembly on the Solar Dynamics Observatory that show the temperature of the mate-
rial inside the bubble to be > 250,000 K. The observed upflows are hypothesized to
be created by the magnetic Rayleigh-Taylor instability.

The growth rate (w) of the magnetic Rayleigh-Taylor instability for a uniform
magnetic field parallel to the interface is w? = kg/(o++p-) [(p+ -po) - (szﬁ)/ (27rkg)]
where B is the magnetic field strength and k; is the perturbation in the direction of the
magnetic field (Chandrasekhar 1961). Stone & Gardiner (2007) investigated the im-
pact of shear in the magnetic field across the contact discontinuity, finding that this
suppressed the small wavenumbers creating wider filamentary structures. Ryutova et
al. (2010) described how the theoretical growth rate and behavior for the magnetic

Rayleigh-Taylor instability well match the observations of the plumes.

The model that we use in this work is the Kippenhahn-Schliiter prominence model
(Kippenhahn & Schliiter 1957; Priest 1982). This model describes the local structure
of the prominence useing the Lorentz force of a curved magnetic field to support
plasma against gravity (see Fig. 2). The model is uniform in the vertical direction and
there is no corona. This model has been shown to be linearly stable to ideal MHD
perturbations (Kippenhahn & Schliiter 1957; Anzer 1969). A full description of this
study of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schliiter model
is given in Hillier et al. (2011). A brief dscription of the results are given in this paper.

2. Numerical Method

In this study, we use the 3D conservative ideal MHD equations. Constant gravita-
tional acceleration is assumed, but viscosity, diffusion, heat conduction and radiative
cooling terms are neglected and we assume an ideal gas. The equations are non-
dimentionalized using the sound speed (C; = 13.2kms™"), the pressure scale height
(A =C,/(yg) = RyT [(ug) = 6.1x 107 cm), the density at the centre of the prominence
(o(x = 0) = 10713 g cm™>) and the temperature (T, = 10* K), giving a characteristic
timescale of 7 = A/Cy = 47s. We take y = 1.05 and 5 = 0.5.
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Figure 1. Panels a & b are observations showing the formation of dark plumes propagating
from a bubble that forms below a quiescent prominence observed on 8 August 2007 20:01 UT
taken in the 656.3 nm Ha spectral line. Panels ¢ & d show the simulated evolution of upflows
att =719 & 2453 s (normalized units r = 15.3 & 52.2) taken in the x = 0 plane.

The initial model is as follows B,(x) = Byg and B,(x) = B.ctanh [(B;ex)/(2BxA)]
where p(x) and p(x) are calculated from the horizontal and vertical hydrostactic equi-
librium respectively. B, is the value of B, at x = 0 and B, is the value B, as x — oo.
A low density tube is placed in the centre of the model, at x = z = 0 with density of
0.3p(0) (temperature of 3.37) of width 2A and height 8 A. The initial conditions are
shown in Fig. 2. The grayscale represents the mass density, the lines represent the
magnetic field lines. To excite the instability a velocity perturbation in v, (given as a
sum of sinusoidal curves) with maximum amplitude less than 0.01Cj is given.

We assume a reflective symmetry boundary at x = 0 and a free boundary at x = L,
with a damping zone (damping time 7 = 4.4) for the hydromagnetic variables and
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Figure 2. Contour plots of the initial density distribution for the standard model for (a) the x —z
plane at y = 0 (with magnetic field lines), (b) the y — z plane at x = 0 & (c) the 3D visualisation.
All physical quantities are initially constant in the y direction. The initial velocity perturbation
is applied to the upper contact discontinuity in along the y direction.

B, (to maintain the angle of the magnetic field at the boundary). For the top and
bottom boundary, a periodic boundary is assumed and a reflective symmetry boundary
is imposed at y = 0, L,. The scheme used is a two step Lax-Wendroff scheme. In the
y-direction there are 150 grid points with dy = 0.05, and in the x-z plane there are
75 % 400 grid points, giving an area of 3.5A X 85A with a fine mesh in the area of the
contact discontinuity to resolve the plumes.

3. Evolution of the upflows

Fig. 1 panels ¢ and d show the evolution of the upflows for the simulation presented
in this paper. Upflows of size ~ 3A in width with velocities ~ 0.39C; can be seen in
panel d of the figure. First the buoyant tube rises, then the interchange of magnetic
field lines is excited by the small perturbation given at the start of the simulation.

As the upflows grow they interact with each other to create larger plumes. This
interaction results from the slight difference in plume size created by the random per-
turbation. The result of this interaction is the formation of the large plumes. This is
known as the inverse cascade process and is a common feature of the Rayleigh-Taylor
instability (see, for example, Youngs 1984 or Isobe et al. 2006). In this case the density
difference and magnetic field suppress the Kelvin-Helmhotz instability.

The 3D structure of the magnetic field evolution caused by the upflows and down-
flows is displayed in Fig. 3. The figure shows the density isosurface at p = 0.85 and
the magnetic field lines at t = 15.3 & 52.2. The figure shows that the upflows form
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Figure 3. The 3D visualisation of the evolution of upflows for ¢ = 719 & 2453 s (normalized
units ¢ = 15.3 & 52.2).

field aligned filamentary structures inside the prominence. The field lines move by
gliding past each other in an interchange process.

4. Discussion

In this paper, results of the nonlinear evolution of the magnetic Rayleigh-Taylor in-
stability in the Kippenhahn-Schliiter model are presented. We found that nonlinear
mode coupling was important for forming large upflows. The plumes are field aligned
structures created by the interchange of magentic field lines.

Fig. 1 is used for the comparison between the simulations and oservations (the
magnetic field assumed to be along the line of sight). In both the simulation and
the observations, the bubble-prominence boundary becomes unstable creating rising
plumes that have similar morphology. The simulated plume temperature is determined
by the initial conditions, in this case giving plumes of 7 = 3.3 x 10* K. The observed
upflows have a constant velocity of approximately 20 kms~!, whereas the simulated
plumes have an average velocity of 5.1kms~! which is a factor of 4 smaller than the
upflows observed. The observed plumes propagate through a height of approximately
10 Mm and have a characteristic width of ~ 300 km—2 Mm. The simulations produced
upflows that have an initial width of ~ 200km, but through nonlinear processes pro-
duced upflows of ~ 600 km—1.8 Mm in width and, by the end of the simulation, had
propagated through a height of 6 Mm.

The paper presents the first efforts to simulate the formation of upflows in a solar
prominence. A wider parameter survey is required to fully understand the upflow
dynamics in this model.
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