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Abstract. Force-free magnetic fields, in which the magnetic or Lorentz
force is self-balancing and hence zero, provide a simple model for fields
in the Sun’s corona. In principle the model may be solved using bound-
ary values of the field derived from observations, e.g. data from the Hinode
spectro-polarimeter. In practise the boundary data is inconsistent with the
model, because fields at the photospheric level are subject to non-magnetic
forces, and because of substantial uncertainties in the boundary data. The
‘self-consistency’ procedure (Wheatland & Régnier 2009) provides an ap-
proach to resolving the problem. This talk reports on results achieved with
the procedure, in particular new results obtained for active region AR 10953
using Hinode data incorporating uncertainties in the boundary conditions
(Wheatland & Leka 2011).
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1. Introduction

Sunspot magnetic fields power large-scale solar activity, including solar flares and
Coronal Mass Ejections, and the space weather effects of these events motivate mod-
elling of the source fields at the Sun (Committee On The Societal & Economic Impacts
Of Severe Space Events 2008). Modern society is increasingly dependent on space-
based communication systems. These may be damaged during severe space weather
events, potentially incurring large economic losses (Odenwald, Green & Taylor 2006).

‘Vector magnetograms’ are maps of the magnetic field vector B over regions on
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the Sun’s photosphere, derived from spectro-polarimetric measurements of photo-
spheric lines showing the Zeeman effect. As Del Toro Iniesta & Cobo (1996) em-
phasized, “nobody can measure physical quantities of the solar atmosphere” – vector
magnetograms represent an inference of the magnetic field at the photosphere, but
are not direct measurements. The ‘Stokes inversion’ procedures used to derive vector
magnetogram field values are method and model dependent (Del Toro Iniesta 2003).
Additional uncertainty is introduced by the need to resolve the intrinsic 180-degree
ambiguity in the direction of the field transverse to the line of sight (Metcalf et al.
2006; Leka et al. 2009). Subject to these substantial uncertainties, vector magne-
tograms provide photospheric values B = (Bx, By, Bz) of the magnetic field in local
heliospheric coordinates x, y, z (with z radially out). It is common to neglect the
curvature of the Sun on the active region scale.

In principle, vector magnetogram data are boundary conditions for coronal field
modeling (often called ‘reconstruction’ or ‘extrapolation’), and a new generation of
instruments is providing high quality data, including the space-based Hinode Solar
Optical Telescope Spectro-Polarimeter (SOT/SP) (Tsuneta et al. 2008), and the So-
lar Dynamics Observatory Helioseismic & Magnetic Imager (SDO/HMI) (Scherrer,
Hoeksema & The HMI Team 2006).

A popular model for the coronal magnetic field is the force-free model:1

J × B = 0 and ∇ · B = 0, (1)

where J = µ−1
0 ∇ × B is electric currrent density. Physically this represents a sta-

tic magneto-hydrodynamic model in which the Lorentz force dominates over other
forces, and hence is zero in static equilibrium, i.e. J is parallel to B. Eqns. 1 may be
rewritten as

B · ∇α = 0 and ∇ × B = αB (2)

introducing the force-free parameter α defined by J = αB/µ0. The boundary condi-
tions on the model in a half space (z > 0) are Bz over z = 0 together with α over z = 0
in the region where Bz > 0 (the ‘P polarity’), or in the region where Bz < 0 (the ‘N
polarity’) (Grad & Rubin 1958). There is a choice for the boundary conditions on α
because this parameter is constant along magnetic field lines, according to the first of
Eqns. 2.

Vector magnetograms provide two sets of boundary conditions at the photosphere
(the z = 0 plane): Bz is provided, and α may be constructed over both the P and N
regions, using the vertical electric current density Jz estimated from the vector mag-
netogram field values:

µ0Jz|z=0 =
∂By
∂x

∣∣∣∣∣∣
z=0
− ∂Bx

∂y

∣∣∣∣∣
z=0

, (3)

1In this paper, by ‘model’ we mean the force-free model, and by ‘solution’ we mean a specific solution
to that model.
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together with α = µ0Jz/Bz. Hence in principle there are two solutions (the P and N
solutions) to the force-free model for vector magnetogram boundary data. The P so-
lution uses the boundary values of Bz over the entire magnetogram, and the α values
over the P polarity. The N solution uses the boundary values of Bz over the entire
magnetogram, and the α values over the N polarity. If the boundary conditions are
consistent with the force-free model, the two solutions will match. In practise the
solutions do not match, and in particular they have different field line structures and
magnetic energies (Metcalf et al. 2008; Schrijver et al. 2008). This is the ‘inconsis-
tency’ problem.

Fig. 1 illustrates the problem: it shows the P solution in panel (a) and the N
solution in panel (b) for Hinode-derived vector magnetogram boundary data for active
region AR 10953, observed on 30 April 2007. The solutions were calculated with a
code implementing a Grad-Rubin (1958) method of solution of Eqns. 2 (Wheatland
2007). The field lines are shown in the figure by the curved structures in the panels,
and the photospheric values of Bz are shown by the greyscale image in the background.
The field lines are quite dissimilar, with the N solution being much more distorted than
the P solution, due to the presence of larger electric currents densities Jz = αBz in the
boundary values. The energies of the two solutions are also shown: the P solution
has energy E = 1.03E0, and the N solution has energy E = 1.15E0, where E0 is the
energy of the potential (current-free) field with the same boundary values of Bz.

The inconsistency problem occurs because the solar atmosphere is not force free
at the height of the vector magnetogram field determinations (Metcalf et al. 1995),
and also because of the substantial uncertainties in the inferred field values. Incon-
sistency renders force-free modeling from vector magnetogram data unreliable (De
Rosa et al. 2009). The procedure of ‘preprocessing’ (Wiegelmann, Inhester & Sakurai
2006) which is sometimes applied to vector magnetogram data before reconstruction
does not solve the problem. Preprocessed boundary data remain inconsistent with the
force-free model. Similarly, non Grad-Rubin methods of solving the force-free equa-
tions such as optimization (Wheatland, Sturrock & Roumeliotis 2000), which use the
vector field B at the photosphere as boundary conditions and hence arrive at a single
‘solution,’ do not solve the inconsistency problem – the solution must depart from the
force-free model, and hence is inaccurate and unreliable. Nonlinear force-free mod-
eling from vector magnetogram boundary data should not be trusted for quantitative
analysis and interpretation of the Sun’s coronal magnetic field.

2. The self-consistency procedure

The ‘self-consistency procedure’ (Wheatland & Régnier 2009) provides one approach
to the problem of the mismatch between vector magnetogram boundary data and the
force-free model. The idea is to find a solution to the force-free model which is ‘close’
to matching the vector magnetogram boundary data on α for both the P and the N
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Figure 1. The two inconsistent nonlinear force-free solutions for vector magnetogram boundary
conditions for AR 10953: (a) the P solution; (b) the N solution.

solutions. A similar, but different scheme has recently been presented by Amari &
Aly (2010).

The procedure may be summarised in three steps. At step one, P and N solu-
tions are constructed, using the Grad-Rubin procedure, from the vector magnetogram
boundary data. At step two, the boundary conditions on α are adjusted, based on the
solutions and uncertainties in the boundary values of α. Specifically, the P and N
solutions define two sets of α values at z = 0: αP ± σP and αN ± σN (each of which
is consistent with the force-free model). Bayesian probability (Jaynes & Bretthorst
2003) is used to estimate ‘true’ values for α, under the assumption that these are two
sets of observations of the same data with Gaussian uncertainties. The estimates are
(Wheatland & Régnier 2009):

αest = σ2
est

(
αP/σ

2
P + αN/σ

2
N

)
with σ2

est =
1

1/σ2
P + 1/σ2

N

. (4)

The αest values are still inconsistent with the force-free model, but are expected to be
closer to consistency. Step three in the procedure is to iterate steps one and two until
consistency is achieved, i.e. until the P and N solutions (and their boundary values)
match. At each iteration, the vector magnetogram boundary values of α used in step
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one are replaced by the new estimates αest ± σest. The iterations of the procedure are
called ‘self-consistency cycles.’

The self-consistency procedure was initially tested on Hinode SOT/SP data for ac-
tive region AR 10953 on 30 April 2007 (see Fig. 1), in Wheatland & Régnier (2009).
This region was the subject of nonlinear force-free modeling using a number of dif-
ferent nonlinear force-free solution codes in an earlier study (De Rosa et al. 2009),
which highlighted the many difficulties associated with the modeling, in particular
the consistency problem. The self-consistency modeling of AR 10953 presented in
Wheatland & Régnier (2009) demonstrated that the method works in application to
vector magnetogram data: a self-consistent solution was obtained. However, the re-
sults were considered to be a ‘proof of concept,’ rather than a realistic solution for
the coronal field because different uncertainties σ were not assigned to the differ-
ent boundary values of α (all boundary points were assumed to have equal values of
σ). This neglect resulted in a self-consistent solution that was close to potential: the
energy of the final field was E/E0 = 1.02. Recently the calculation was repeated,
including uncertainties derived from the Stokes inversion procedure used to construct
the vector magnetogram (Wheatland & Leka 2011). The inclusion of different uncer-
tainties at different boundary points acts to preserve boundary values of α at points
where σ is small, i.e. where the boundary values are well-determined. This follows
from the uncertainty-weighted averaging in Eqns. 4. The boundary values of α tend
to be more certain where the field is stronger (e.g. in the core of an active region), and
these locations tend to include large electric currents. The corresponding large values
of Jz = αBz are preserved over the self-consistency cycles, leading to more significant
departure from the potential field configuration (by comparison with the case when
the individual uncertainties are ignored).

In the following section we briefly summarise the new results for the modeling of
active region AR 10953, including uncertainties, as presented in detail in Wheatland
& Leka (2011).

3. Modeling AR 10953 with uncertainties

In the revised modeling of active region AR 10953 (Wheatland & Leka 2011), the
initial data consists of an Hinode SOT/SP vector magnetogram merged with Solar
and Heliospheric Observer Michelson Doppler Interferometer (SoHO/MDI) line-of-
sight magnetic field data (Scherrer et al. 1995). The merging provides boundary data
over a wider field of view at the photosphere than is provided by Hinode observations
alone. The data grid is of size 313 × 313 with a grid spacing of 0.8 arcseconds. The
Hinode Stokes inversion process involves nonlinear least-squares fitting of a model
atmospheric spectrum to the observed spectrum, for each set of observed Stokes pro-
files. This gives magnetic field values with uncertainties, where the uncertainties are
based on the χ2 values of the goodness of fit. These uncertainties are considered to be
lower bounds to more realistic uncertainties because they involve only the curvature
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of the fit in the χ2 space, and neglect e.g. systematic errors, photon noise, and the
question of the validity of the atmospheric modeling. The resulting Hinode SOT/SP
boundary field values with uncertainties are converted into boundary values α ± σ
for the force-free parameter using Eqn. 3 together with propagation of uncertainties.
Boundary points in the MDI data region are assigned α = 0 and a large (nominal)
uncertainty.

The Wheatland (2007) nonlinear force-free code is used to calculate solutions on a
313×313×300 grid, from the Hinode/MDI vector magnetogram boundary conditions.
The Grad & Rubin (1958) method used by the code involves iterative solution of a set
of linear partial differential equations, such that the iteration sequence is expected to
converge to a solution to the nonlinear system of Eqns. 2. At each self-consistency
cycle, NGR = 30 Grad-Rubin iterations are used to construct individual P and N so-
lutions, and this process is repeated over a chosen number of self-consistency cycles.
The self-consistency procedure is found to converge in less than 10 cycles. The en-
ergies of the final P and N solutions are both E/E0 = 1.08, with the two solutions
differing in energy by < 0.03%. The energy is intermediate between the energies of
the initial P and N solutions (see Fig. 1).

Fig. 2 shows the self-consistent solutions obtained, with the same display as that
used in Fig. 1. Panel (a) shows the P solution and panel (b) shows the N solution. The
field lines for the two solutions are very similar, illustrating the achievement of self-
consistency. The field is quite distorted, indicating substantial non-potentiality. The
inclusion of individual uncertainties in the boundary conditions on electric current
density has resulted in the preservation of well-determined large currents, leading to
larger energy, by comparison with the earlier calculation presented in Wheatland &
Régnier (2009).

The self-consistency procedure alters the boundary values of α (and hence of
Jz = αBz) but does not alter the boundary values of Bz. When individual uncer-
tainties σ are assigned to the α values, the values tend to be preserved at locations
with small values of σ. Inspection of the distribution of Jz at the photosphere for
the vector magnetogram and the self-consistent solution shows that, while the details
vary, structures in the current with a large signal-to-noise ratio are preserved. Quan-
titatively, the individual values are altered substantially, leading to relatively large
changes in the horizontal field components Bx and By. Fig. 3 shows histograms of

∆Bh =
[
(B f

x − Bi
x)2 + (B f

y − Bi
y)

2
]1/2

, where i denotes values in the initial vector mag-
netogram, and f the self-consistent solution, for the same boundary points. Only
points in the Hinode data region are included. The average absolute change in the
horizontal field is 〈∆Bh〉 ≈ 170 Mx/cm2, and the average change in units of the un-
certainties is 〈∆Bh/σBh〉 ≈ 9. Many points are subject to a change substantially larger
than the corresponding uncertainty. As discussed in Section 3, these uncertainties may
be interpreted as lower bounds. In addition, the data is expected not to be force-free,
i.e. to vary by more than the uncertainties with respect to force-free boundary data.
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Figure 2. The self-consistent nonlinear force-free solutions obtained for AR 10953: (a) the P
solution; (b) the N solution.

Another problem with nonlinear force-free modeling, related also to inconsis-
tency, is that the iterative methods used to solve the nonlinear force-free model tend
not to converge, strictly, when applied to solar vector magnetic field data (Schrijver et
al. 2008; De Rosa et al. 2009). The Grad-Rubin procedure exhibits slow oscillations in
field structures and energy rather than converging to a static field with a fixed energy.
This is due to the presence of large localised values of Jz = αBz in the boundary con-
ditions. Because of this the P and N solutions constructed at early self-consistency
cycles depend in detail on the choice of the number NGR of Grad-Rubin iterations
used. To investigate the influence of this problem on the self-consistency results, the
calculation is repeated with NGR = 20 and NGR = 40 iterations at each cycle. In each
case the results are very similar to those obtained with NGR = 30 Grad-Rubin itera-
tions, and in particular the new energies are all found to be E/E0 = 1.08, to the stated
digits. This suggests that the final results are robust despite the early dependence of
the calculations on this parameter.

4. Conclusions

Accurate modeling of magnetic fields in the Sun’s corona is needed to better under-
stand various processes including the origins of space weather events. In principle
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Figure 3. Quantitative changes ∆Bh in the horizontal field at the photosphere produced by the
self-consistency procedure. The change is defined as ∆Bh =

[
(B f

x − Bi
x)

2 + (B f
y − Bi

y)
2
]1/2

, with
i denoting values in the initial vector magnetogram, and f the final values in the self-consistent
solution. Upper panel: histogram of changes in absolute values. Lower panel: the changes in
units of the uncertainties. The vertical dashed lines indicate the average values.

vector magnetograms (maps of the inferred magnetic field at the photosphere) provide
boundary conditions for modeling the corona using the nonlinear force-free model. In
practise vector magnetogram boundary data are inconsistent with the nonlinear force-
free model, and the modeling is unreliable (Schrijver et al. 2008; De Rosa et al. 2009).
This point does not seem to be widely appreciated, so it is worth restating, in dramatic
terms: nonlinear force-free modeling from vector magnetogram boundary data should
not be trusted!

An approach to solving this problem – the self-consistency procedure – is ex-
plained. The method has been demonstrated in application to Hinode SOT/SP data
for active region AR 10953 (Wheatland & Régnier 2009). The original calculation
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neglected individual uncertainties in the boundary conditions on electric current den-
sity, which led to the self-consistent solution being close to potential (current-free),
with a relatively small magnetic energy (E/E0 = 1.02, where E0 is the energy of the
potential field with the same boundary conditions on Bz). Recently the calculation
was revisited with individual uncertainties included (Wheatland & Leka 2011). This
is an important new step because the uncertainties act to preserve the electric current
density at locations where it is well-determined, based on the vector magnetic field
data.

The new calculation is summarised here. The self-consistent solution obtained is
significantly non-potential (magnetic energy E/E0 = 1.08). The boundary conditions
on the electric current density are substantially altered, but basic structures in the
currents are preserved.

Self-consistency is a promising method for coronal magnetic field modeling. It
overcomes the inconsistency problem and provides an accurate solution to the non-
linear force-free model. We emphasize again that this is not possible with nonlinear
force-free methods applied directly to vector magnetogram data: either two solutions
to the force-free model are obtained, or a single, inaccurate solution results. Hence the
self-consistency approach makes nonlinear force-free modeling of coronal magnetic
fields possible, for the first time. However, the results of the method require inde-
pendent verification as an accurate representation of the magnetic field in the corona.
Also, it is important to consider more physically based modeling, incorporating non-
magnetic forces into the model. These topics will be examined in future studies.
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